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NONLINEAR MARKOV CONTROL PROCESSES
AND GAMES: FINAL REPORT

Vassili N. Kolokoltsov

Abstract

The project was devoted to the analysis of a new class of stochastic games that I called
nonlinear Markov games, as they arise as a (competitive) controlled version of nonlinear
Markov processes, which can be roughly characterized by the property that the future
depends on the past not only via the present position (as in usual Markov processes),
but also via its distribution. This class of games can model a variety of situations for
economics and epidemics, statistical physics and pursuit - evasion processes.

Nonlinear Markov games can be considered as a systematic tool for modeling deception.
In particular, in a game of pursuit - evasion, an evading object can create false objectives
or hide in order to deceive the pursuit. Thus, observing this object leads not to its precise
location, but to its distribution only, implying that it is necessary to build competitive
control on the basis of the distribution of the present state. Moreover, by observing
the action of the evading objects, one can make conclusions about its certain dynamic
characteristics making the (predicted) transition probabilities depending on the observed
distribution via these characteristics. This is precisely the type of situations modeled by
nonlinear Markov games.

Another key motivation arises from the steady increase in complexity of the modern
technological development requires an appropriate (or better optimal) management of
complex stochastic systems consisting of large number of interacting components (agents,
mechanisms, vehicles, subsidiaries, species, police units, etc) , which may have competitive
or common interests. Carrying out a traditional Markov decision analysis for a large state
space is often unfeasible. However, under rather general assumptions, the limiting problem
as the number of components tends to infinity can be described by a well manageable
nonlinear deterministic evolution on measures, and its controlled version is given precisely
by a nonlinear Markov control process or (in case of competitive interests) a nonlinear
Markov game that we are investigating.

The results of the project concern the fundamental mathematical questions of the
theory of nonlinear Markov control processes and games like well posedness and control-
lability, as well as more applied issues such as convergence of approximating schemes. The
latter are linked with interacting particle approximations, as introduced above.

1 Objectives for each grant year

The overall aim of the project was to address both the fundamental questions of the theory of
nonlinear Markov control processes and games like well posedness and controllability, and the
more applied issues such as approximation and numeric schemes.
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Simple illustrative examples to have in mind were: (1) Pursuit - evasion: the evader produces
false targets, so that the control of the pursuer should be based not on the observed position
of the evader, but only on the observed distribution of this position; (2) Finances: observing
performance of the competitor-company allows one to make a conclusion on the distribution of
certain hidden internal parameters of this company, and hence to make decisions based on this
distribution. (3) Similarly, the traces of the actions of terrorists or other organize crime groups
can be used to assess the probability distribution of their actual states (physical locations,
amount of equipment available, etc.), which again leads to the problem of control on the basis
of the knowledge of the probability law on the state space thus relating nonlinear Markov
control processes to the methods of crime (say, terrorist attacks) prevention.

Another crucial point for modern modeling in finance or inspection - crime prevention
measures is in making decision on the basis of certain risk characteristics like variance or VaR
(Value at Risk), which represent functions of the whole distribution, and not only on the
position of a process at a given time.

Let us state the objectives for each year.
Tasks for Year 1.
Before plunging seriously into the control setting, the analysis of nonlinear Marov pro-

cesses themselves was to be developed starting with the simplest classes such as nonlinear
Levy processes and nonlinear Markov chains. The analysis had to include basic constructions,
well-posedness issues, qualitative behavior and approximating schemes.

To pave the way for possibly wider applications, the links with concrete problems of natu-
ral science should be explicitly established including the models of non-equilibrium statistical
mechanics, the replicator dynamics of multi agent evolutionary games (evolutionary biology),
relevant models of financial dynamics and disease spreading.

Tasks for Year 2.
The main core of the research proposed is in the developing of the theory of nonlinear

Markov processes and their controlled versions including competitive control. Initiated in year
1 mostly on the level of discrete models, this task had to be fully completed in Year 2.

Tasks for year 3.
The main problem is in linking the theoretical construction of nonlinear Markov processes

with controlled system of interacting particles bringing discrete approximation with algorithmic
methods of numeric calculations and more concrete applied models, like decision making or
controlling large robot swamps or large armies. Thus we have to establish a rigorous link
with two-sided applicability. Firstly, in order to be able to apply the theoretic results to
concrete models of practical interest, the numeric schemes for the solutions are to be developed
together with appropriate estimates for error terms. The most natural approximation and
related algorithms are based on the approximations by systems of a large number of interacting
particles. On the other hand, solving limiting nonlinear control Markov process can lead to a
useful qualitative and quantitative asymptotics to the system of interacting particles.

As motivation for further research we indicated possible extensions to state spaces with
nontrivial geometry, to the controlled nonlinear quantum dynamic semigroups and related
nonlinear quantum Markov processes, as well as to the full infinite-dimensional measure valued
control Markov processes and games.
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2 Findings for each objective

2.1 Findings for year 1

The large part of the work for Year 1 was devoted to discrete models.
We have summarized the nonlinear analogues of the basic theory of usual Markov chains,

where measures (on a finite state space) are described by a finite-dimensional simplex. A dis-
crete space nonlinear Markov semigroup is a one-parameter semigroup of (possibly nonlinear)
transformations of the unit simplex in n-dimensional Euclidean space (which represents the set
of probability laws in a finite set of n points. In stochastic representation these transformations
are given by stochastic matrices (as for usual Markov chains) depending on a position (non-
linearity!), whose elements specify nonlinear transition probabilities. Our first result yields the
nonlinear analog of the basic convergence to a stationary regime from the theory of Markov
chains, basic conditions being certain mixing property of nonlinear transition probabilities.
In case of the semigroup parametrized by continuous time one defines its generator as the
derivative of the semigroup at time zero. Stochastic representation for the generator means its
representation by a Q-matrix (or infinitesimally stochastic matrix) again depending on a po-
sition. Examples are numerous: replicator dynamics, Lottka-Volterra model, basic epidemics,
see [1].

For the corresponding control process we obtain nonlinear analogs of the basic long time
behavior result, showing the existence of the limiting average income per unit of time and of
the stationary strategies (turnpikes), see [1]. Related results were later developed in [9] on a
somewhat more systematic and general grounds that are not yet fully exploited in the nonlinear
case.

Let us point out the (not so obvious) place of the usual stochastic control theory in this
nonlinear setting. Namely, even assuming that the transition probabilities do not depend on
the distribution, does not reduce the problem to the usual stochastic control setting, but to
a game with incomplete information, where the states are probability laws. That is, when
choosing a move the players do not know the position precisely, but only its distribution.

The analysis of nonlinear Markov processes was systematically developed from two compli-
mentary points of view: (i) analytic, based on functional analytic technique of semigroups and
operators, where the main object was the nonlinear kinetic equation in the weak form of the
type

d

dt
(f, µt) = (Aµtf, µt) (1)

for the flow of Borel measures µt inRd, with a family of pseudo-differential generators of Markov
processes of the type

Lµf(x) =
1

2
(G(x, µ)∇,∇)f(x) + (b(x, µ),∇f(x))

+

∫
(f(x+ y)− f(x)− (∇f(x), y))ν(x, µ; dy),

see [1],[4]; and (ii) probabilistic, based on the related to (1) differential equations driven by
nonlinear Lévy noise:

dX(t) = dYt(X(t),L(X(t))) (2)
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in Rd (L(X) denotes the probability law of the random variable X), where Yt(z, η) is a family
of Lévy processes specified by the Lévy-Khinchine generators

L[z, η]f(x) =
1

2
(G(z, η)∇,∇)f(x) + (b(z, η),∇f(x))

+

∫
(f(x+ y)− f(x)− (∇f(x), y))ν(z, η; dy),

depending on a point z and a probability measure η in Rd as on parameters, see [1], [3], [7] (and
some details and complements in [2]). The construction is given explicitly via the nonlinear
analog of the Ito-Euler approximation scheme. This scheme also supplies the numeric algorithm
for the practical calculations of the solutions.

The links with non-equilibrium statistical mechanics, the replicator dynamics of multi agent
evolutionary games and epidemiology were established in [1] (evolutionary biology), financial
models were given received even more attention highlighted in [5] and [10]. The examples again
are numerous, as these evolutions exhaust all positivity preserving evolutions on measures sub-
ject to certain mild regularity assumptions. In particular, they include the Vlasov, Boltzmann,
Smoluchovski, Landau-Fokker-Planck equations, as well as McKean diffusions and many other
models.

Extending the link with usual Markov chains (described above) to general Markov processes
with continuous state space, we can stress that, for a nonlinear Markov process, the future de-
pends on the past not only via its present position, but also via its present distribution. A
nonlinear Markov semigroup can be considered as a nonlinear deterministic dynamic system,
though on a weird state space of measures. To give it a probabilistic interpretation one should
specify a stochastic representation for this semigroup in terms of nonlinear transition probabil-
ities satisfying the nonlinear analog of the Chapman-Kolmogorov equation, see in more details
in Section ’Findings for year 2’ below.

2.2 Findings for year 2

In Year 1 the theory of nonlinear Markov processes was developed for discrete state space and
initiated for the general case. In Year 2 we completed this development.

Let us describe in more detail the central object of our study: a nonlinear Markov process.
Loosely speaking, a nonlinear Markov evolution is just a dynamical system generated by a
measure-valued ordinary differential equation (ODE) with the specific feature of preserving
positivity. This feature distinguishes it from a general Banach space valued ODE and yields a
natural link with probability theory, both in interpreting results and in the tools of analysis.
Technical complications for the sensitivity analysis, again compared with the standard theory of
vector-valued ODE, lie in the specific unboundedness of generators that causes the derivatives of
the solutions to nonlinear equations (with respect to parameters or initial conditions) to live in
other spaces, than the evolution itself. From the probabilistic point of view, the first derivative
with respect to initial data (specified by the linearized evolution around a path of nonlinear
dynamics) describes the interacting particle approximation to this nonlinear dynamics (which,
in turn, serves as the dynamic law of large numbers to this approximating Markov system
of interacting particles), and the second derivative describes the limit of fluctuations of the
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evolution of particle systems around its law of large numbers (probabilistically the dynamic
central limit theorem).

More precise definition is as follows. Let M̃(X) be a dense subset of the space M(X) of
finite (positive Borel) measures on a polish (complete separable metric) space X (considered
in its weak topology). By a nonlinear sub-Markov (resp. Markov) propagator in M̃(X) we
shall mean any propagator V t,r of possibly nonlinear transformations of M̃(X) that do not
increase (resp. preserve) the norm. If V t,r depend only on the difference t − r and hence
specify a semigroup, this semigroup is called nonlinear (or generalized) sub-Markov or Markov
respectively.

The usual, linear, Markov propagators or semigroups correspond to the case when all the
transformations are linear contractions in the whole space M(X). In probability theory these
propagators describe the evolution of averages of Markov processes, i.e. processes whose evolu-
tion after any given time t depends on the past X≤t only via the present position Xt. Loosely
speaking, to any nonlinear Markov propagator there corresponds a process whose behavior after
any time t depends on the past X≤t via the position Xt of the process and its distribution at t.

More precisely, consider the nonlinear equation in the weak form

d

dt
(g, µt) = (A[µt]g, µt), g ∈ C(X), (3)

with a certain family of operators A[µ] in C(X) depending on µ as a parameter and such that
each A[µ] specifies a uniquely defined Markov process (say, via solution to the corresponding
martingale problem, or by generating a Feller semigroup).

Suppose that the Cauchy problem for equation (3) is well posed and specifies the weakly
continuous Markov semigroup Tt in M(X). Suppose also that for any weakly continuous curve
µt ∈ P(X) (the set of probability measures on X) the solutions to the Cauchy problem of the
equation

d

dt
(g, νt) = (A[µt]g, νt) (4)

define a weakly continuous propagator V t,r[µ.], r ≤ t, of linear transformations in M(X) and

hence a Markov process in X, with transition probabilities p
[µ.]
r,t (x, dy). Then to any µ ∈ P(X)

there corresponds a (usual linear, but time non-homogeneous) Markov process Xν
t in X (ν

stands for an initial distribution) such that its distributions νt solve equation (4) with the
initial condition ν. We call the family of processes Xµ

t a nonlinear Markov process. When
each A[µ] generates a Feller semigroup and Tt acts on the whole M(X) (and not only on its
dense subspace), the corresponding process can be also called nonlinear Feller. Allowing for
the evolution on subsets M̃(X) is however crucial, as it often occurs in applications, say for
the Smoluchovski or Boltzmann equation with unbounded rates.

Thus a nonlinear Markov process is a semigroup of the transformations of distributions
such that to each trajectory is attached a “tangent” Markov process with the same marginal
distributions. The structure of these tangent processes is not intrinsic to the semigroup, but
can be specified by choosing a stochastic representation for the generator, that is of the r.h.s.
of (4).

The theoretical issues that we mentioned above concerned the well-posedness of equations
of type (3) and its sensitivity to various parameters and were developed in full in [3], [4], [7].
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The development was carried out on the level of generality needed for applications to many
agent and/or control systems dealt in Year 3.

2.3 Findings for year 3: main objectives

The last three indicative directions for further possible directions (configuration space of non-
trivial geometry, controlled nonlinear quantum dynamic semigroups and full infinite-dimensional
measure valued control Markov processes and games) were touched upon in book [1], Sec. 11.3,
11.4 and in book [2], Chapter 6, but were mainly left to the future research.

Our main work was around two mainstreams of competitive control problems for nonlinear
Markov processes:

1) Each agent has individual payoff. This leads to mean-field games initiated for the case
of underlying diffusion process by P. Caines, R. Malhame, M. Huang. Here we developed the
theory for an arbitrary underlying nonlinear Markov process, see [6] and

2) Individuals fulfil the objectives of competitive leaders (generals with armies, engineers
with robot-swamps, etc), where the main completed results so far are presented in [8]. This
paper summarized many ideas of this project and, at the same time, opened the road for several
further directions of research that were not thought about at the initial stage of the project.

Let us outline the theory for both cases in more detail.

2.4 Findings for year 3: mean-field games

Mean-field game methodology aims at describing control processes with large number N of
participants by studying the limit N → ∞ when the contribution of each member becomes
negligible and their interaction is performed via certain mean-field characteristics, which can
be expressed in terms of empirical measures. A characteristic feature of the MFG analysis is
the study of a coupled system of a backward equation on functions (Hamilton-Jacobi-Bellman
equation) and a forward equation on probability laws (Kolmogorov equation). We showed
that the machinery of nonlinear Markov processes could serve as a natural tool for studying
mean-field games with the general underlying Markov dynamics of agents (not only diffusions).
More specifically, the main consistency equation of MFG can be looked at as a coupling of a
nonlinear Markov process with certain controlled dynamics. Using this link we develop the
MFG methodology for a wide class of underlying Markov dynamics including in particular
stable and stable-like processes, as well as their various modifications like tempered stable-like
process or their mixtures with diffusions.

Moreover, our abstract approach yields essential improvements even for underlying processes
being diffusions. In particular, it includes the case of diffusions coefficients (not only drifts)
depending on empirical measures, it allows us to get rid of the assumption of small coupling
(or composite gain), to prove the crucial sensitivity estimates (to derive the regularity of HJB
equations from the regularity of the Hamiltonian functions), and finally to get a full prove of
convergence rate of order 1/N .

Let us explain now the main ideas, objectives and strategy of our analysis. Suppose a
position of an agent is described by a point in a locally compact separable metric space X . A
position of N agents is then given by a point in the power XN = X ×· · ·×X (N times). Hence
the natural state space for describing the variable (but not vanishing) number of players is the

6



union X̂ = ∪∞
j=1X j. We denote by Csym(XN) the Banach spaces of symmetric (with respect

to permutation of all arguments) bounded continuous functions on XN and by Csym(X̂ ) the

corresponding space of functions on the full space X̂ . We denote the elements of X̂ by bold
letters, say x, y.

Reducing the set of observables to Csym(X̂ ) means effectively that our state space is not

X̂ (or XN in case of a fixed number of particles) but rather the quotient space SX̂ (or SXN

resp.) obtained with respect to the action of the group of permutations, which allows the
identifications Csym(X̂ ) = C(SX̂ ) and Csym(XN) = C(SXN). Clearly SX̂ can be identified
with the set of all finite collections of points from X , the order being irrelevant.

A key role in the theory of measure-valued limits of interacting particle systems is played
by the inclusion SX̂ to P(X ) (the set of probability laws on X ) given by

x = (x1, ..., xN) 7→
1

N
(δx1 + · · ·+ δxN

) =
1

N
δx, (5)

which defines a bijection between SXN and the subset PN
δ (X ) (of normalized sums of Dirac’s

masses) of P(X ). This bijection extends to the bijection of SX̂ to

Pδ(X ) := ∪∞
N=1PN

δ (X ) ⊂ P(X ),

that can be used to equip SX̂ with the structure of a metric space by pulling back any distance
on P(X ) that is compatible with its weak topology.

Let {A[t, µ, u]} be a family of generators of Feller processes in X , where t ≥ 0, µ ∈ P(X )
and u ∈ U (a metric space interpreted as a set of admissible controls). Assume also that a
mapping γ : R+ × X → U is given. For any N , let us define the following (time-dependent)
family of operators (pre-generators) on Csym(XN) describing N mean-field interacting agents:

ÂN
t [γ]f(x) = ÂN

t [γ]f(x1, · · · , xN) :=
N∑
i=1

Ai[t, µ, ui]f(x1, · · · , xN), (6)

where

µ =
1

N

N∑
i=1

δxi
=

1

N
δx

is the empirical distribution of agents, ui = γ(t, xi) and Ai[t, µ, ui]f means the action of the

operator A[t, µ, ui] on the ith variable of the function f . Let us assume that the family ÂN
t [γ]

generates a Markov process XN = {XN(t) = (XN
1 (t), . . . , XN

N (t) : t ≥ 0)} on XN for any N .
We shall refer to it as a controlled (via control γ) process of N mean-field interacting agents.

In the terminology of statistical mechanics the operator Ât[γ] (considered for allN , i.e. lifted
naturally to the whole space Csym(X̂ )) should be called the second quantization of A[t, µ, u].

Using mapping (5), we can transfer our process of N mean-field interacting agents from
SXN to PN

δ (X ). This leads to the following operator on C(PN
δ (X )):

ÂN
t [γ]F (δx/N) = ÂN

t [γ]f(x) =
N∑
i=1

Ai[t, µ, ui]f(x1, · · · , xN), (7)
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where f(x) = F (δx/N) and x = (x1, · · · , xN). Let us calculate the action of this operator on
linear functionals F , that is on the functionals of the form

F g(µ) = (g, µ) =

∫
g(x)µ(dx) (8)

for a g ∈ C(X ). Denoting g⊕(x) =
∑N

i=1 g(xi) for x = (x1, · · · xN) we get

ÂN
t [γ]F

g(δx/N) =
1

N

(
ÂN

t [γ]g
⊕
)
(x1, · · · , xN)

=
1

N

N∑
i=1

(A[t, δx/N, γ(t, xi)]g) (xi) = (A[t, δx/N, γ(t, .)]g, δx/N) .
(9)

Hence, if µN
t = δx/N → µt ∈ P(X ) as N → ∞, we have

ÂN
t [γ]F

g(δx/N) →
(
A[t, µN

t , γ(t, .)]g, µ
N
t

)
, as N → ∞,

so that the evolution equation
Ḟt = ÂN

t [γ]Ft (10)

of our controlled process of N mean-field interacting agents, for the linear functionals of the
form F g

t (µ) = (g, µt(µ)) turns to the equation

d

dt
(g, µt) = (A[t, µt, γ(t, .)]g, µt), µ0 = µ. (11)

We call this equation the general kinetic equation in weak form. It should hold for g from
a suitable class of test functions. This limiting procedure will be discussed in detail later on.

Let us explain how the mapping γ pops in from individual controls. Assume that the
objective of each agent is to maximize (over a suitable class of controls {u.}) the payoff

E

[∫ T

t

J(s,XN
i (s), µN

s , us) ds+ V T (XN
i (T ))

]
,

consisting of running and final components, where the functions J : R+ ×X ×P(X )×U → R
and V T : X → R, and the final time T are given, and where {µ.} is the family of the empirical
measures of the whole process

µN
s =

1

N
(δXN

1 (s) + · · ·+ δXN
N (s)), t ≤ s ≤ T.

By dynamic programming (and assuming appropriate regularity), if the dynamics of empirical
measures µs is given, the optimal payoff

VN(t, x) = sup
u.

E

[∫ T

t

J(s,X(s), µN
s , us) ds+ V T (X(T ))

]
of an agent starting at x at time t should satisfy the HJB equation

∂VN(t, x)

∂t
+max

u

(
J(t, x, µN

t , u) + A[t, µN
t , u]VN(t, x)

)
= 0 (12)
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with the terminal condition VN(T, .) = V T (·). If µN
t → µt ∈ P(X ) as N → ∞, then it is

reasonable to expect that the solution of (12) converges to the solution of the equation

∂V (t, x)

∂t
+max

u

(
J(t, x, µt, u) + A[t, µt, u]V (t, x)

)
= 0. (13)

Assume HJB equation (13) is well posed and the max is achieved at one point only. Let us
denote this point of maximum by u = Γ(t, x, {µ≥t}).

Thus, if each agent chooses the control via HJB (13), given an empirical measure µ̂, i.e.
with

γ(t, x) = Γ(t, x, {µ̂≥t}), (14)

this γ specifies a nonlinear Markov evolution {µt}t≥0 via kinetic equation (11). The correspond-
ing MFG consistency (or fixed point) condition {µ̂.} = {µ.} leads to the equation

d

dt
(g, µt) = (A[t, µt,Γ(t, ., {µ≥t})]g, µt), (15)

which expresses the coupling of the nonlinear Markov process specified by (15) and the optimal
control problem specified by HJB (13). It is now reasonable to expect that if the number of
agents N tends to infinity in such a way that the limiting evolution is well defined and satisfies
the limiting equation (15) with Γ chosen via the solution of the above HJB equation, then the
control γ and the corresponding payoffs represent the ϵ-Nash equilibrium for the controlled
system of N agents, with ϵ → 0, as N → ∞. This statement (or conjecture) represents the
essence of the MFG methodology.

Under certain assumptions on the family A[t, µ, u], we justify this claim by carrying out the
following tasks:

T1) Proving the existence of solutions to the Cauchy problem for coupled kinetic equations
(15) within an appropriate class of feedback Γ and the well-posedness for the uncoupled equa-
tions (11). Notice that we are not claiming uniqueness for (15). It is difficult to expect this,
as in general Nash equilibria are not unique. At the same time, it seems to be an important
open problem to better understand this non-uniqueness by describing and characterizing spe-
cific classes of solutions. On the other hand, well-posedness for the uncoupled equations (11)
is crucial for further analysis.

T2) Proving the well-posedness of the Cauchy problem for the (backward) HJB equation
(13), for an arbitrary flow {µ.} in some class of regularity, yielding the feedback function Γ in
the class required by T1). This should include some sensitivity analysis of Γ with respect to the
functional parameter {µ.}, which will be needed to show that approximating the limiting MFG
distribution {µ.} by approximate N -particle empirical measures yields also an approximate
optimal control. To perform this task, we shall assume here additionally that the operators
A[t, µ, u] in (13) can be decomposed into the sum of a controlled 1st order term and a term
that does not depend on control and generates a propagator with certain smoothing properties.
This simplifying assumption allows to work out the theory with classical (or at least mild) solu-
tions of HJB equations. Without this assumption, one would have to face additional technical
complications related to viscosity solutions.

T3) Showing the convergence of the N -particle approximations, given by generators (9) to
the limiting evolution (11), i.e. the dynamic laws of large numbers (LLN), for a class of controls γ

9



arising from (14) with a fixed {µ̂.}, where Γ is from the class required for the validity of T1) and
T2). Here one can use either more probabilistic compactness and tightness (on Skorokhod paths
spaces) approach, or a more analytic method via semigroups of linear operators on continuous
functionals of measures. We use the second method, as it yields more precise convergence rates.
For the analysis of the convergence of the corresponding semigroups the crucial ingredient is
the analysis of smoothness (sensitivity) of the solutions to kinetic equations (11) with respect
to initial data. The rates of convergence in LLN imply directly the corresponding rather precise
estimates for the so-called propagation of chaos property of interacting particles.

T4) Finally, combining T2) and T3), one has to show that thus obtained strategic profile
(14) with {µ̂.} = {µ.} represents an ϵ-equilibrium for N agents system with ϵ → 0, as N → ∞.
Actually we going to prove this with ϵ = 1/N using the method of tagged particles in our control
setting.

This program is carried out under rather general assumptions in the extensive preprint [6].
Let us specify our model a bit further.
Of particular interest are the models with the one-particle space X having a spatial and a

discrete components, the latter interpreted as a type of an agent. Thus let X = Rd ×K, where
K is either a finite or denumerable set. In this case, functions from C(X ) can be represented
by sequences f = (fi)i∈K with each fi ∈ C(Rd), the probability laws on X are similarly given
by the sequences µ = (µi)i∈K of positive measures on Rd with the masses totting up to one.

The operators A in C(X ) are specified by operator-valued matrices {Aij}, i, j ∈ K, with
Aij being an operator in C(Rd), so that (Af)i =

∑
j∈K Aijfj. It is not difficult to show that for

such a matrix A to define a conditionally positive conservative operator in C(X ) (in particular,
a generator of a Feller process) it is necessary that Aij for i ̸= j are integral operators

(Aijf)(z) =

∫
Rd

(fj(y)− f(z))νij(z, dy)

with a bounded (for each z) measure νij(z, dy), and the diagonal terms are given by the Lévy-
Khintchin type operators (i ∈ K):

Aiif(z) =
1

2
(Gi(z)∇,∇)f(z) + (bi(z),∇f(z))

+

∫
Rd

(f(z + y)− f(z)− (∇f(z), y)1B1(y))νi(z, dy), (16)

with Gi(z) being a symmetric non-negative matrix, νi(z, .) being a Lévy measure on Rd, i.e.∫
Rd

min(1, |y|2)νi(z, dy) < ∞, ν({0}) = 0, (17)

depending measurably on z, and where 1B1 denotes, as usual, the indicator function of the unit
ball in Rd.

Operators Aij with i ̸= j describe the mutation (migration) between the types. If mutations
are not allowed, A will be given by a diagonal matrix with the diagonal terms Ai = Aii of type
(16).

Let us assume additionally that each agent can control only its drift, that is the diagonal
generators have the form

Ai[t, µ, u]f(z) = (hi(t, z, µ, u),∇f(z)) + Li[t, µ]f(z), i = 1, · · · , K, (18)
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with Li of form (16), i.e.

Li[t, µ]f(z) =
1

2
(Gi(t, z, µ)∇,∇)f(z) + (bi(t, z, µ),∇f(z))

+

∫
Rd

(f(z + y)− f(z)− (∇f(z), y)1B1(y))νi(t, z, µ, dy)
(19)

with the coefficientsGi, bi, νi depending on t ∈ R+ and µ = (µ1, · · · , µK) ∈ P(X ) as parameters.
If, for a given (probability) measure flow {µt}t∈[0,T ], the operators L[t, µt] = (L1, · · · , LK)[t, µt]

generate a Markov process {Rt[µt]}t∈[0,T ] = {(R1
t [µt], · · · , RK

t [µt])}t∈[0,T ], one can write a stochas-
tic differential equation (SDE) corresponding to the generator given in (18) as

dX i
t = hi(t,X

i
t , µt, u

i
t) dt+ dRi

t[µt], i = 1, · · · , K.

If µt are required to coincide with the laws of X i
t , for all t ∈ [0, T ], these equations take the

form of SDEs driven by nonlinear Lévy noises, developed in [1], [3], [7].
The initial work on the mean field games, done by Lions et al. and Caines et al., dealt with

the processes Rt[µ] being Brownian Motions without dependence on µ. In our framework, this
underlying process is extended to an arbitrary Markov process with a generator (19) depending
on µ.

In the main kinetic equation (11), we shall then have (g, µt) =
∑K

i=1(gi, µi,t) and

A[t, µt, γ(t, .)]g = {Ai[t, µt, γ(t, .)]gi}Ki=1

with
Ai[t, µ, γ(t, .)]gi(z) = (hi(t, z, µ, γ(t, .)),∇gi(z)) + Li[t, µ]gi(z). (20)

HJB equation (13) now decomposes into a collection of HJB equations for each class of
agents, written as

∂V i(t, x)

∂t
+H i

t(x,∇V i(x), µt) + Li[t, µt]V
i(t, x) = 0 (21)

where
H i

t(x, p, µt) := max
u∈U

{hi(t, x, µt, u)p+ Ji(t, x, µt, u)}. (22)

We have assumed the resulting feedback control is unique (i.e. argmax in (22) is unique).
The basic example of such situation is given by H∞-optimal control problems, where For each
i, the running cost function Ji is quadratic in u, i.e.

Ji(t, x, µ, u) = αi(t, x, µ)− θi(t, x, µ)u
2

and the drift coefficient hi is linear in u, i.e.

hi(t, x, µ, u) = βi(t, x, µ)u,

where the functions αi, βi, θi : [0, T ] × Rd × P(Rd) → R and θi(t, x, µ) > 0 for any (t, x, µ).
Thus the explicit formula of the unique point of maximum becomes available:

u =
β

2θ
(t, x, µ)p,
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and the HJB equation (21) rewrites as

∂V i(t, x)

∂t
+

β2
i

4θi
(t, x, µ)(∇V i)2(t, x) + αi(t, x, µ) + Li[t, µt]V

i(t, x) = 0

which is a generalized backward Burger’s equation. Another natural example is the situation,
where, for each i, hi(t, x, µ, u) = u and Ji(t, x, µ, u) is a strictly concave smooth function of u.
Then H i

t is the Legendre transform of −J as a function of u, the unique point of maximum in
(22) is therefore u = ∂H i

t/∂p and the kinetic equation (15) takes the form

d

dt
(g, µt) =

K∑
k=1

(Li(t, µt)gi +
∂H i

t

∂p
(x, p, µt)|p=∇V i(x)∇gi, µi,t). (23)

2.5 Findings for year 3: centralized control

Let us turn to the discussion of centralized controls. We consider here only the case of finite
initial state space (for which the theory is fully developed so far), when the corresponding space
of measures becomes a finite-dimensional Euclidean space (more precisely its positive orthant
Rd

+), so that the limiting measure-valued evolution becomes a deterministic control process or a
differential game in Rd

+. Let us show how the identification of deterministic limit is carried and
formulate the main results on convergence referring for full proofs to [8]. we shall assume that
there is a fixed number of players {1, · · · , K} each controlling a stochastic system consisting of
a large number N1, · · · , NK → ∞ components respectively. These can be generals controlling
armies, engineers controlling robot swamps, large banks managers controlling subsidiaries, etc.
The components can interact between themselves and with agents of other groups. The limit
N1, · · · , Nk → ∞ will be described by a differential game in RK

+ .
Recall the standard notation Ck(Ω), k ∈ N, for the Banach space of k times continuously

differentiable functions in the interior of Ω ⊂ Rd with f and all its derivatives up to and
including order k having continuous and bounded extension to Ω, equipped with norm ∥f∥Ck(Ω)

which is the sum of the sup-norms of f and all its derivatives up to and including order k. For
α ∈ (0, 1], we denote by Ck,α(Ω) the subspace of Ck(Ω) consisting of functions, whose kth order
derivatives are Hölder continuous of index α. The Banach norm on this space is defined as the
sum of the norm in Ck(Ω) plus the minimal Hölder constant.

Law of large numbers for interacting Markov chains.
Let us first recall the basic setting of mean-field interacting particle systems with a finite

number of types. Suppose our initial state space is a finite set {1, ..., d}, which can be interpreted
as the types of particles (say, possible opinions of individuals on a certain subject, or the levels of
fitness in a military unit, or the types of robots in a robot swamp). Let {Q(t, x)} = {(Qij)(t, x)}
be a family of d × d square Q-matrices or Kolmogorov matrices (i.e. non-diagonal elements
of these matrices are non-negative and the elements of each row sum up to one) depending
continuously on a vector x from the closed simplex

Σd = {x = (x1, ..., xd) ∈ Rd
+ :

d∑
j=1

xj = 1},
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and piecewise continuously on time t ≥ 0. For any x, the family {Q(., x)} specifies a Markov
chain on the state space {1, ..., d} with the generator

(Q(t, x)f)n =
∑
m̸=n

Qnm(t, x)(fm − fn), f = (f1, · · · , fd),

and with the intensity of jumps being

|Qii(t, x)| = −Qii(t, x) =
∑
j ̸=i

Qij(t, x).

In other words, the transition matrices P (s, t, x) = (Pij(s, t, x))
d
i,j=1 of this chain satisfies the

Kolmogorov forward equations

d

dt
Pij(s, t, x) =

d∑
l=1

Qlj(t, x)Pil(s, t, x), s ≤ t.

Suppose we have a large number of particles distributed arbitrary among the types {1, ..., d}.
More precisely our state space S is Zd

+, the set of sequences of d non-negative integers N =
(n1, ..., nd), where each ni specifies the number of particles in the state i. Let |N | denote the
total number of particles in state N : |N | = n1 + ...+ nd. For i ̸= j and a state N with ni > 0
denote by N ij the state obtained from N by removing one particle of type i and adding a
particle of type j, that is ni and nj are changed to ni − 1 and nj + 1 respectively. The mean-
field interacting particle system specified by the family {Q} is defined as the Markov process
on S specified by the generator

Ltf(N) =
d∑

i,j=1

niQij(t, N/|N |)[f(N ij)− f(N)]. (24)

Probabilistic description of this process is as follows. Starting from any time and current state
N one attaches to each particle a |Qii|(N/|N |)-exponential random waiting time (where i is the
type of this particle). If the shortest of the waiting times τ turns out to be attached to a particle
of type i, this particle jumps to a state j according to the distribution (Qij/|Qii|)(N/|N |).
Briefly, with this distribution and at rate |Qii|(N/|N |), any particle of type i can turn (migrate)
to a type j. After any such transition the process starts again from the new state N ij. Notice
that since the number of particles |N | is preserved by any jump, this process is in fact a Markov
chain with a finite state space.

Remark 1 Yet another way of describing the chain generated by Lt is via the forward Kol-
mogorov (or master) equation for its transition probabilities PMN(s, t):

d

dt
PMN(s, t) =

d∑
i,j=1

(ni + 1)Qij(t,
N ji

|N |
)PMN ij(s, t)−

d∑
i,j=1

niQij(t,
N ij

|N |
)PMN(s, t), s ≤ t.
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To shorten the formulas, we shall denote the inverse number of particles by h, that is
h = 1/|N |. Normalizing the states to N/|N | ∈ Σh

d , where Σ
h
d is a subset of Σd with coordinates

proportional to h, leads to the generator of the form

Lh
t f(N/|N |) =

d∑
i=1

d∑
j=1

ni

|N |
|N |Qij(t, N/|N |)[f(N ij/|N |)− f(N/|N |)], (25)

or equivalently

Lh
t f(x) =

d∑
i=1

d∑
j=1

xiQij(t, x)
1

h
[f(x− hei + hej)− f(x)], x ∈ hZd

+, (26)

where e1, ..., ed denotes the standard basis in Rd. With some abuse of notation, let us denote by
hN t,h the corresponding Markov chain. The transition operators of this chain will be denoted
by Ψh

s,t:

Ψh
s,tf(hN) = Es,hNf(hN(t, h)), s ≤ t, (27)

where Es,x denotes the expectation of the chain started at x at time s. These operators are
known to form a propagator, i.e. they satisfy the chain rule (or Chapman-Kolmogorov equation)

Ψh
s,tΨ

h
t,r = Ψh

s,t, s ≤ t ≤ r.

We shall be interested in the asymptotic behavior of these chains as h → 0. To this end,
let us observe that, for f ∈ C1(Σd),

lim
|N |→∞, N/|N |→x

|N |[f(N ij/|N |)− f(N/|N |)] = ∂f

∂xj

(x)− ∂f

∂xi

(x),

so that
lim

|N |→∞, N/|N |→x
Lh
t f(N/|N |) = Λtf(x),

where

Λtf(x) =
d∑

i=1

∑
j ̸=i

xiQij(t, x)[
∂f

∂xj

− ∂f

∂xi

](x) =
d∑

k=1

∑
i ̸=k

[xiQik(t, x)− xkQki(t, x)]
∂f

∂xk

(x). (28)

The limiting operator Λtf is a first-order PDO with characteristics solving the equation

ẋk =
∑
i̸=k

[xiQik(t, x)− xkQki(t, x)] =
d∑

i=1

xiQik(t, x), k = 1, ..., d, (29)

called the kinetic equations for the process of interaction described above. The characteristics
specify the dynamics of the deterministic time-nonhomogeneous Markov Feller process in Σd

defined via the generator Λt. The corresponding transition operators act on C(Σd) as

Φs,tf(x) = f(Xs,x(t)), s ≤ t, (30)

where Xs,x(t) is the solution to (29) with the initial condition x at time s. These operators
form a Feller propagator (i.e. Φs,t depend strongly continuous on s, t and satisfy the chain rule
Φs,tΦt,r = Φs,r, s ≤ t ≤ r). Of course in case of Q that do not depend on time t explicitly, Φs,t

depend only on the difference t− s and the operators Φt = Φ0,t form a Feller semigroup.
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Remark 2 It is easy to see that if xk ̸= 0, then (Xs,x(t))k ̸= 0 for any t ≥ s. Hence the
boundary of Σd is not attainable for this semigroup, but, depending on Q, it can be glueing or
not. For instance, if all elements of Q never vanish, then the points Xs,x(t) never belong to the
boundary of Σd for t > s, even if the initial point x does so.

Theorem 2.1 (i) Let all the elements Qij(t, .) belong to C1,α(Σ), α ∈ (0, 1], with norms uni-
formly bounded in t. Then, if for some s > 0 and x ∈ Rd, the initial data hNs converge to x in
Rd, as h → 0, the Markov chains hN(t, h) with the initial data hNs (generated by Lh

t and with
transitions Ψs,t) converge in distribution and in probability to the deterministic characteristic
Xs,x(t). For the corresponding converging propagators of transition operators the following rates
of convergence hold:

sup
0≤s≤t≤T

sup
N∈Zd

+:|N |=1/h

[
Ψh

s,tf(hN)− Φs,tf(hN)
]
≤ C(T )(t− s)hα∥f∥C1,α(Σd), (31)

for f ∈ C1,α(Σ) and

sup
0≤s≤t≤T

[Es,hNf(hN(t, h))− f(Xs,x(t))] ≤ C(T )
(
(t− s)hα∥f∥C1,α(Σd) + ∥f∥C1(Σd)|hN − x|

)
,

(32)
where C(T ) depends only on the supremum in t of C1,α(Σ)-norm of the functions Q(t, x).

(ii) Assuming a weaker regularity condition, namely that Qij(t, .) belong to C1(Σ) uniformly
in t, the convergence of Markov chains hN(t, h) in distribution and in probability to the deter-
ministic characteristics still holds, but instead of (31), we have weaker rates in terms of the
modulus of continuity wh of ∇f and Q:

sup
0≤s≤t≤T

sup
N∈Zd

+:|N |=1/h

[
Ψh

s,tf(hN)− Φs,tf(hN)
]

≤ C(T )(t− s)
(
whC(T )(∇f) + whC(T )(∇Q)∥f∥C1(Σd)

)
, (33)

where C(T ) depends on the C1(Σ)-norm of Q. A similar modification of (32) holds.

Our objective is to extend this result to interacting and competitively controlled families of
Markov chains.

Mean field Markov control
Turning to control dynamics, let us start with mean-field controlled Markov chains without

competition. Suppose we are given a family of Q-matrices {Q(t, u, x)} = {(Qij)(t, u, x), i, j =
1, · · · d}, depending on x ∈ Σd, t ≥ 0 and a parameter u from a metric space interpreted as
control. The main assumption will be that Q ∈ C1,α(Σd) as a function of x with the norm
bounded uniformly in t, u, and Q depends continuously on t and u.

Any given bounded measurable curve u(t), t ∈ [0, T ], defines a Markov chain on Σh
d with

the time-dependent family of generators of type (25), that is

Lt,u(t)f

(
N

|N |

)
=

d∑
i,j

niQij

(
t, u(t),

N

|N |

)[
f

(
N ij

|N |

)
− f

(
N

|N |

)]
, (34)
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or equivalently

Lh
t,u(t)f(x) =

d∑
i=1

d∑
j=1

xiQij(t, u(t), x)
1

h
[f(x− hei + hej)− f(x)]. (35)

For simplicity (and effectively without loss of generality), we shall stick further to controls u(.)
from the class Cpc[0, T ] of piecewise-continuous curves (with a finite number of discontinuities).

Again for f ∈ C1(Σd),

lim
h=1/|N |→0, N/|N |→x

Lh
t,u(t)f(N/|N |) = Λt,u(t)f(x),

where

Λt,u(t)f(x) =
d∑

k=1

∑
i̸=k

[xiQik(t, u(t), x)− xkQki(t, u(t), x)]
∂f

∂xk

(x), (36)

with the corresponding controlled characteristics governed by the equations

ẋk =
∑
i̸=k

[xiQik(t, u(t), x)− xkQki(t, u(t), x)] =
d∑

i=1

xiQik(t, u(t), x), k = 1, ..., d. (37)

For a given T > 0 and continuous functions J (current payoff) and VT (terminal payoff),
let Γ(T, h) denote the problem of a centralized controller of the chain with |N | = 1/h particles,
aiming at maximizing the payoff∫ T

0

J

(
s, u(s),

N(s, h)

|N |

)
ds+ VT

(
N(T, h)

|N |

)
. (38)

The optimal payoff will be denoted by V h(t, x):

V h(t, x) = sup
u(.)∈Cpc[t,T ]

E
u(.)
t,x

[∫ T

t

(J(s, u(s), hN(s, h))ds+ VT (hN(T, h))

]
, (39)

where E
u(.)
t,x denotes the expectation with respect to the Markov chain on Σh

d generated by (34)
and started at x = hN at time t.

We are aiming at approximating V h(t, x) by the optimal payoff

V (t, x) = sup
u(.)∈Cpc[t,T ]

[∫ T

t

J(s, u(s), Xt,x(s)) ds+ VT (Xt,x(T ))

]
(40)

for the controlled dynamics (37).
We can also obtain approximate optimal synthesis for problems Γ(T, h) with large |N | = 1/h,

at least if regular enough synthesis is available for the limiting system. Let us recall that a
function γ(t, x) is called an optimal synthesis (or an adaptive policy) for the problem Γ(T, h) if

V h(t, x) = Eγ
t,x

[∫ T

t

(J(s, γ(s, hN(s, h)), hN(s))ds+ VT (hN(T, h))

]
(41)
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for all t ≤ T and x ∈ Σh
d , where E

γ
t,x denotes the expectation with respect to the Markov chain

on Σh
d generated by (34) with u(t) = γ(t, x) and starting at x = hN at time t. A function

γ(t, x) is called an ϵ-optimal synthesis or an ϵ-adaptive policy, if the r.h.s. of (41) differs from
its l.h.s. by not more than ϵ. Similarly an optimal synthesis or an adaptive policy are defined
for the limiting deterministic system.

Theorem 2.2 (i) Assume that Q, J depend continuously on t, u and Q, J ∈ C1,α(Σd), α ∈
(0, 1], as functions of x, with the norms bounded uniformly in t, u, and finally VT ∈ C1,α(Σd).
Then

sup
0≤t≤T

[V h(t, hN)− V (t, x)]

≤ C(T )((T − t)hα + |hN − x|)
(
∥VT∥C1,α(Σd) + sup

s,u
∥J(t, u, .)∥C1,α(Σd)

)
, (42)

with C(T ) depending only on the bounds of the norms of Q in C1,α(Σd). Moreover, if u(t)
is an ϵ-optimal control for deterministic dynamics (37), that is the payoff obtained by using
u(.) differs by ϵ from V (t, x), then u(.) is also an (ϵ + C(T )hα)-optimal control for |N | = 1/h
particle system.

(ii) Suppose additionally that u belong to a convex subset of a Euclidean space and that
Q(t, u, x) depends Lipschitz continuously on u. Let ϵ ≥ 0, and let γ(t, x) be a Lipschitz con-
tinuous function of x uniformly in t that represents an ϵ-optimal synthesis for the limiting
deterministic control problem. Then, for any δ > 0, there exists h0 such that, for h ≤ h0,
γ(t, x) is an (ϵ+ δ)-optimal synthesis for the approximate optimal problem Γ(T, h) on Σh

d.

Notice finally that by the standard dynamic programming, the optimal payoff V (t, x) given
by (40) represents the unique viscosity solution of the HJB-Isaacs equation

∂V

∂t
(t, x) + max

u

[
J(t, u, x) +

d∑
i,k=1

xiQik(u, x)
∂V

∂xk

(t, x)

]
= 0, (43)

and the optimal payoff V h(t, x) given by (39) solves the HJB equation

∂V h

∂t
(t, x) + max

u
[J(t, u, x) + Lh

t,uV
h(t, x)] = 0. (44)

Thus, as a corollary of Theorem 2.2, we have proved the convergence of the solutions of the
Cauchy problem for equation (44) to the viscosity solution of (43).

Two players with mean-field or binary interaction
Let us turn to a game-theoretic setting starting with a simplest model of two compet-

ing mean-field interacting Markov chains. Suppose we are given two families of Q-matrices
{Q(t, u, x) = (Qij)(u, x)} and {P (t, v, x) = (Pij)(v, x)}, i, j = 1, · · · d, depending on x ∈ Σd

and parameters u and v from two subsets U and V of Euclidean spaces. Any given bounded
measurable curves u(t), v(t), t ∈ [0, T ], define a Markov chain on Σ

1/|N |
d × Σ

1/|M |
d , specified by

the generator

Lt,u(t),v(t)f(
N

|N |
,
M

|M |
) =

d∑
i,j

niQij(t, u(t),
N

|N |
)[f

(
N ij

|N |
,
M

|M |

)
− f

(
N

|N |
,
M

|M |

)
]
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+
d∑
i,j

miPij(t, v(t),
M

|M |
)[f

(
N

|N |
,
M ij

M

)
− f

(
N

|N |
,
M

|M |

)
], (45)

where N = (n1, · · · , nd), M = (m1, · · · ,md).
We shall assume for simplicity that |N | = |M | = 1/h.
Then (45) rewrites as

Lh
t,u(t),v(t)f(x, y) =

d∑
i=1

d∑
j=1

xiQij(t, u(t), x)
1

h
[f(x− hei + hej, y)− f(x, y)]

+
d∑

i=1

d∑
j=1

yiPij(t, v(t), y)
1

h
[f(x, y − hei + hej)− f(x, y)], x, y ∈ hZd

+. (46)

For f ∈ C1(Σd × Σd),

lim
h→0, N/|N |→x,M/|M |→y

Lh
t,u(t),v(t)f(N/|N |,M/|M |) = Λt,u(t),v(t)f(x, y),

where

Λt,u(t),v(t)f(x, y) =
d∑

k=1

∑
i̸=k

[xiQik(t, u(t), x)− xkQki(t, u(t), x)]
∂f

∂xk

(x)

+
d∑

k=1

∑
i̸=k

[yiPik(t, u(t), x)− ykPki(t, v(t), y)]
∂f

∂yk
(y). (47)

The corresponding controlled characteristics are governed by the equations

ẋk =
∑
i̸=k

[xiQik(t, u(t), x)− xkQki(t, u(t), x)] =
d∑

i=1

xiQik(t, u(t), x), k = 1, ..., d, (48)

ẏk =
∑
i̸=k

[yiPik(t, v(t), y)− ykPki(t, v(t), y)] =
d∑

i=1

yiPik(t, v(t), y), k = 1, ..., d. (49)

For a given T > 0, let us denote by Γ(T, h) the stochastic game with the dynamics specified
by the generator (45) and with the objective of the player I (controlling Q via u) to maximize
the payoff ∫ T

0

J

(
s, u(s), v(s),

N(s, h)

|N |
,
M(s, h)

|M |

)
ds+ VT

(
N(T, h)

|N |
,
M(T, h)

|M |

)
(50)

for given functions J (current payoff) and VT (terminal payoff), and with the objective of player
II (controlling P via v) to minimize this payoff (zero-sum game). As previously we want to
approximate it by the deterministic zero-sum differential game Γ(T ), defined by dynamics (48),
(49) and the payoff of player I given by∫ T

0

J(s, u(s), v(s), Xt,x(s), Yt,y(s)) ds+ VT (Xt,x(T ), Yt,y(T )). (51)
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Recall the basic notions of the upper and lower values for a game Γ(T ). As above, we
shall use controls u(.) and v(.) from the classes Cpc([0, T ];U) and Cpc([0, T ];V ) of piecewise-
continuous curves with values in U and V respectively. A progressive strategy of player I is
defined as a mapping β from Cpc([0, T ];V ) to Cpc([0, T ];U) such that if v1(.) and v2(.) coincide
on some initial interval [0, t], t < T , then so do u1 = β(v1(.)) and u2 = β(v2(.)). Similarly
progressive strategies are defined for player II. Let us denote the sets of progressive strategies
for players I and II by Sp([0, T ];U) and Sp([0, T ];V ). Then the upper and the lower values for
the game Γ(T ) are defined as

V+(t, x, y) = sup
β∈Sp([0,T ];U)

inf
v(.)∈Cpc([0,T ];V )[∫ T

t

J(s, (β(v))(s), v(s), Xt,x(s), Yt,x(s)) ds+ VT (Xt,x(T ), Yt,x(T ))

]
, (52)

V−(t, x, y) = inf
β∈Sp([0,T ];V )

sup
u(.)∈Cpc([0,T ];U)[∫ T

t

J (s, u(s), (β(u))(s), Xt,x(s), Yt,x(s)) ds+ VT (Xt,x(T ), Yt,x(T ))

]
.

If the so called Isaac’s condition holds, that is, for any pk, qk,

max
u

min
v

[
J(t, u, v, x, y) +

d∑
i,k=1

xiQik(t, v, x)qk +
d∑

i,k=1

yiPik(t, v, x)pk

]

= min
v

max
u

[
J(t, u, v, x, y) +

d∑
i,k=1

xiQik(t, v, x)qk +
d∑

i,k=1

yiPik(t, v, x)pk

]
, (53)

then the upper and lower values coincide: V+(t, x, y) = V−(t, x, y).
Similarly the upper and the lower values V h

+ (t, x, y) and V h
− (t, x, y) for the stochastic game

Γ(T, h) are defined.

Theorem 2.3 Assume that Q,P, J depend continuously on t, u and Q,P, J, VT ∈ C1,α(Σd),
α ∈ (0, 1], as functions of x, with the norms bounded uniformly in t, u, v. Then

sup
0≤t≤T

[V h
± (t, hN)− V±(t, x)]

≤ C(T )((T − t)hα + |hN − x|)
(
∥VT∥C1,α(Σd) + sup

s,u
∥J(t, u, v, .)∥C1,α(Σd)

)
, (54)

with C(T ) depending only on the bounds of the norms of Q in C1,α(Σd). Moreover, if β ∈
Sp([0, T ];U) and v(.) ∈ Cpc([0, T ];V ) are ϵ-optimal for the minimax problem (52), then this
pair is also (ϵ+ C(T )hα)-optimal for the corresponding stochastic game Γ(T, h).

As in Theorem 2.2 (ii), one can also approximate optimal (equilibrium) adaptive polices for
Γ(T, h), if regular enough (i.e. Lipschitz continuous) equilibrium adaptive policies exist for the
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limiting game Γ(T ). In fact, as is known from differential games, the upper value V+(t, x, y)
represents the unique viscosity solution of the upper Isaac’s equation

∂V+

∂t
(t, x, y) + min

v
max

u
[J(t, u, v, x, y) + Λt,u,vV+(t, x, y)] , V+(T, x, y) = VT (x, y), (55)

and V−(t, x, y) of the lower Isaac’s equation (with min and max placed in a different order).
Similar equations are satisfied by the values of stochastic games V h

± (t, x, y) (see e.g. [?]). Now,
if V ∗ is a solution to the Cauchy problem (55) and there exist Lipschitz continuous functions
v∗(t, x, y) and u∗(t, v, x, y) such that

u∗(t, v, x, y) ∈ argmax[J(t, u, v, x, y) + Λt,u,vV
∗(t, x, y)],

v∗(t, x, y) ∈ argmin max
v

[J(t, u, v, x, y) + Λt,u,vV
∗(t, x, y)],

then V ∗ is a saddle point for the differential game Γ+(T ) giving the information advantage to
maximizing player I. Analogously to Theorem 2.2 (ii), we can conclude by Theorem 2.3 that
the policies v∗(t, x, y) and u∗(t, v, x, y) represent ϵ-equilibria for the corresponding stochastic
game Γ+(T, h).

In a slightly different setting one can assume that changes in a competitive control process
occur as a result of group interactions, and are not determined just by the overall mean field
distribution. Let us discuss a simple situation with binary interaction. Assume we have two
groups of d states (of objects or agents) controlled by players I and II respectively. Suppose now
that any particle from a state i of the first group can interact with any particle from a state j
of the second group (binary interaction) producing changes i to l and j to r with certain rates
Qlr

ij(t, u, v) that may depend on controls u and v of the players. Assuming, as usual, that our
particles are indistinguishable (any particle from a state is selected for interaction with equal
probability), leads to the process, generated by the operators

Lt,u(t),v(t)f(N,M) =
d∑

i,j,l,r=1

nimjQ
lr
ij(t, u(t), v(t),

N

|N |
,
M

|M |
)[f(N il,M jr)− f(N,M)].

Again let us assume for simplicity that |M | = |N | and define h = 1/|N | = 1/|M |. To get a
reasonable scaling limit, it is necessary to scale time by factor h leading to the generators

Lh
t,u(t),v(t)f(

N

|N |
,
M

|M |
) = h

d∑
i,j,l,r=1

nimjQ
lr
ij(t, u(t), v(t),

N

|N |
,
M

|M |
)[f(N il,M jr)− f(N,M)], (56)

which, for x = hN , y = hM and h → 0, tends to

Λt,u(t),v(t)f(x, y) =
d∑

i,j,l,r=1

xiyjQ
lr
ij(t, u(t), v(t), x, y)

[
∂f

∂xl

+
∂f

∂yr
− ∂f

∂xi

− ∂f

∂yj

]
(x, y). (57)

The corresponding kinetic equations (characteristics of this first order partial differential oper-
ator) have the form

ẋk =
d∑

i,j,r=1

yj
[
xiQ

kr
ij (t, u(t), v(t))− xkQ

ir
kj(t, u(t), v(t))

]
,
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ẏk =
d∑

i,j,l=1

xi

[
yjQ

lk
ij (t, u(t), v(t))− ykQ

lj
ik(t, u(t), v(t))

]
,

As in the previous section, we are interested in the zero-sum stochastic game, which will
again be denoted by Γ(T, h), with the dynamics specified by generator (56) and with the
objective of the player I (controlling Q via u) to maximize the payoff of the same type (50),
and in an approximation of this game by the limiting deterministic zero-sum differential game
Γ(T ), defined by the payoff (51) of player I.

Theorem 2.4 Assume that Q, J depend continuously on t, u, v and Q, J, VT ∈ C1,α(Σd), α ∈
(0, 1], as functions of x, with the norms bounded uniformly in t, u, v. Then the same estimate
(54) holds for the difference of upper and lower values of limiting and approximating games.

The theory was also partially extended to the case of K players.
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